The symbols □ and ◊ 00000

Modal logic of forcing

Predicate Principles of Forcing

On the Modal Account of Forcing Oberseminar Logik der Universität Bonn

Clara Elizabeth List Includes joint work with: Joel David Hamkins

Universität Hamburg

24 Oktober 2023

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Table of Contents

What is forcing?

The symbols \Box and \Diamond

Modal logic of forcing

Predicate Principles of Forcing

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Table of Contents

What is forcing?

The symbols \Box and \Diamond

Modal logic of forcing

Predicate Principles of Forcing

The symbols □ and ♦ 00000

Modal logic of forcing

Predicate Principles of Forcing

Independence Proofs

• A large area of set theory focuses on consistency and independence proofs:

Is φ provable from ZFC? Is $\neg \varphi$ provable from ZFC? Are neither provable from ZFC, i.e. is φ independent?

• In other words, we want to prove statements of the form

 $Con(ZFC) \implies Con(ZFC + \varphi)$

i.e. $ZFC + \varphi$ is relatively consistent.

• We need a large toolbox of ways to construct new models! One such tool is *forcing*.

The symbols □ and ♦ 00000

Modal logic of forcing

Predicate Principles of Forcing

What is Forcing?

- We start off with a ground model W of ZFC. By doing lots of "technical stuff", we can extend W to a new model W[G] of ZFC in a very specific way.¹
- The "technical stuff" allows us to:
 - force certain sentences to be true in W[G], and
 - reason about W[G] <u>from within W</u>, even though a lot of W[G] lives outside of W.

$$\begin{array}{ll} \mathsf{Con}(\mathsf{ZFC}) \implies \mathsf{there is a model } W \models \mathsf{ZFC} \\ \implies \mathsf{there is a model } W[G] \models \mathsf{ZFC} + \varphi \\ \implies \mathsf{Con}(\mathsf{ZFC} + \varphi) \end{array}$$

 $^{{}^{1}}G$ denotes the *generic filter* of a forcing notion used in the construction.

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Table of Contents

What is forcing?

The symbols \Box and \Diamond

Modal logic of forcing

Predicate Principles of Forcing

The symbols \Box and \Diamond 0000

Modal logic of forcing

Predicate Principles of Forcing

Modal Logic

- Modal Logic is the study of the modalities *necessarily* (□) and *possibly* (◊). It gives a framework for describing to what extent a formula φ is true.
- There are many other interpretations of \Box and \Diamond , for instance:
 - Epistemic: Alice knows φ ($\Box \varphi$); Alice believes φ ($\Diamond \varphi$)
 - Deontic: It is *obligatory* that φ ; it is *permissible* that φ
 - Temporal: At *every* future moment φ ; at *some* future moment φ

The symbols \Box and \Diamond 0000

Modal logic of forcing

Predicate Principles of Forcing

Modal Logic

- Modal Logic is the study of the modalities *necessarily* (□) and *possibly* (◊). It gives a framework for describing to what extent a formula φ is true.
- There are many other interpretations of \Box and \Diamond , for instance:
 - Epistemic: Alice knows φ ($\Box \varphi$); Alice believes φ ($\Diamond \varphi$)
 - Deontic: It is *obligatory* that φ ; it is *permissible* that φ
 - Temporal: At every future moment φ ; at some future moment φ
 - → Note that \Box and \Diamond are dual, so $\Diamond \varphi \iff \neg \Box \neg \varphi$.

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Kripke frames and Kripke models

Temporal example: $w_0 \models \Diamond p$, $w_0 \not\models \Box p$, $w_0 \models \Diamond \Box p$

In general, we study *frames* (W, R),

- where W is a set of worlds,
- R an accessibility relation,

and models on frames (W, R, ν) ,

• where ν : Prop $\times W \rightarrow \{0,1\}$ is a valuation function.

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Kripke frames and Kripke models

Temporal example: $w_0 \models \Diamond p$, $w_0 \not\models \Box p$, $w_0 \models \Diamond \Box p$

In this example $\mathcal{M} = (W, R, \nu)$ is given by:

▶
$$W = \{w_n \mid n \in \omega\}$$

▶ $w_n R w_m \iff n < m$
▶ $\nu(p, w_n) = 1 \iff (n \neq 0 \land n \neq 2)$

We say $\mathcal{M}, w \models \Box \varphi$ if and only if for all v with wRv we have $\mathcal{M}, v \models \varphi$.

For a frame \mathcal{F} , we may write $\mathcal{F} \models \varphi$ if $\mathcal{M}, w \models \varphi$ for every model \mathcal{M} on \mathcal{F} and every world w on the frame.

Interpretations for studying mathematical structures

Suppose

- $\blacktriangleright~\mathcal{C}$ is the collection of $\mathcal{L}\text{-structures}$ for some first-order language \mathcal{L}
- and \leq is some accessibility relation on C.

Then (\mathcal{C}, \preceq) is a Kripke frame which we can study.

Interpretations for studying mathematical structures

Suppose

- $\blacktriangleright~\mathcal{C}$ is the collection of $\mathcal{L}\text{-structures}$ for some first-order language \mathcal{L}
- and \leq is some accessibility relation on C.

Then (\mathcal{C}, \preceq) is a Kripke frame which we can study.

Some examples that have been studied include

- All abelian groups together with the relation \leq that holds between G and H whenever G is isomorphic to a subgroup of H.
- All transitive set models of ZFC together with $M \leq N$ if and only if M is an *inner model* in N.
- In general, Mod(Γ) for some set of axioms Γ together with a specified type of embedding.
- All set models of ZFC together with $M \leq N$ if and only if N is a forcing extension of M.

→ See for instance [8], [9], [10], [1], [2].

Interpretations for studying mathematical structures

Suppose

- $\blacktriangleright~\mathcal{C}$ is the collection of $\mathcal{L}\text{-structures}$ for some first-order language \mathcal{L}
- and \leq is some accessibility relation on C.

Then (\mathcal{C}, \preceq) is a Kripke frame which we can study.

Denote by \mathcal{L}_{\Box} the language which contains infinitely many propositional variables and logical symbols \land, \neg and \Box .

Question

For which \mathcal{L}_{\Box} sentences $\varphi(p_0,...,p_n)$ do we have

$$\textit{M} \models \varphi(\psi_0/p_0, ..., \psi_n/p_n)$$

for all $M \in C$ and all substitutions $p_i \mapsto \psi_i$ with \mathcal{L} sentences ψ_i ?

The symbols \Box and \Diamond 0000 \bullet

Predicate Principles of Forcing

The Forcing Interpretation of \Box

A forcing translation is a function $\tau : \varphi \mapsto \varphi^{\tau}$ mapping formulas of \mathcal{L}_{\Box} to \mathcal{L}_{\in} such that Boolean connectives are preserved and $(\Box \varphi)^{\tau}$ is the \mathcal{L}_{\in} formula expressing

"in all forcing extensions $\varphi^{ au}$ holds" ²

This is just a fancy way of saying that τ is a substitution of propositional variables in \mathcal{L}_{\Box} for set-theoretic formulas.

Definition

- Force^{ZFC} = { $\varphi \in \mathcal{L}_{\Box} \mid \mathsf{ZFC} \vdash \varphi^{\tau}$ for all forcing translations τ }
- Force^{*W*} = { $\varphi \in \mathcal{L}_{\Box} \mid W \models \varphi^{\tau}$ for all forcing translations τ }, where *W* is a model of set theory

 $^{^2 \}text{Note that this is indeed expressible in } \mathcal{L}_{\in}$

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Table of Contents

What is forcing?

The symbols \Box and \Diamond

Modal logic of forcing

Predicate Principles of Forcing

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

What we already know

Theorem (Hamkins, Löwe [1]) If ZFC is consistent, then $Force^{ZFC} = S4.2$. If $W \models ZFC$, then $S4.2 \subseteq Force^{W} \subseteq S5$.

```
S4.2 = T + 4 + .2

T: \Box p \rightarrow p \text{ (reflexivity)}

4: \Diamond \Diamond p \rightarrow \Diamond p \text{ (transitivity)}

.2: \Diamond \Box p \rightarrow \Box \Diamond p \text{ (directedness)}

S5 = S4.2 + 5

5: \Diamond \Box p \rightarrow \Box p \text{ (symmetry)}
```

Predicate Principles of Forcing

Control Statements

Proving Force^{ZFC} \supseteq **S4.2** is easy: Just verify the axioms! Proving Force^{ZFC} \subseteq **S4.2** is significantly harder.

→ This uses *control statements*.

Definition

Let w be a world in a Kripke model \mathcal{M} . In (\mathcal{M}, w) :

•
$$\varphi$$
 is a button iff $\mathcal{M}, w \models \Box \Diamond \Box \varphi$

• φ is a switch iff $\mathcal{M}, w \models \Box \Diamond \varphi \land \Box \Diamond \neg \varphi$

Proposition

If **S4.2** holds, then every \mathcal{L}_{\Box} formula is either a button, a negated button, or a switch.

If we view the forcing multiverse as a Kripke model, then the following propositions are control statements.

The symbols \Box and $\langle 00000 \rangle$

Predicate Principles of Forcing

Proving Force^{ZFC} \subseteq **S4.2**

- We want to show that if φ ∉ S4.2, then there is a ZFC model W and a forcing translation τ, such that W ⊭ φ^τ
- Idea: If we have completeness of **S4.2** with respect to a class of "sufficiently simple" Kripke models, then we can translate the failure of φ in a "sufficiently simple" Kripke model into the failure of φ^{τ} in the set-theoretic forcing multiverse.
- If we have a collection of *independent*³ buttons and switches, then the possible patters (pushed/unpushed, on/off) form a pre-Boolean algebra.
 - → This allows us to create a so-called *labelling of worlds*, which in turn gives us *τ*.

 $^{^{3}}A$ set of control statements is independent if manipulating the state (pushed/unpushed, on/off) of one of them does not change any others

The symbols □ and ♦

Modal logic of forcing

Predicate Principles of Forcing

Set-theoretic forcing multiverse of W

If we have such a labelling, we can define τ such that W mimics w_A , $W[G_0]$ mimics w_B , $W[G_2]$ mimics w_C etc.

If φ fails in W_A , then φ^{τ} fails in W.

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Table of Contents

What is forcing?

The symbols \Box and \Diamond

Modal logic of forcing

Predicate Principles of Forcing

What about the predicate modal logic of forcing?

- In the previous slides we only considered formulas φ^{τ} where \Box does not occur in the scope of a quantifier, since quantifiers are only added to φ^{τ} through the substitution of propositional variables.
- Let's expand our modal language: L[□] now consists of countably many variables and countably many *predicate* symbols P_i of each arity, and is closed under ∧, ¬, □ and ∀.
- In this context, every world in a Kripke model now has a domain.

Question

What are the *predicate* modal principles of forcing?

One example is the converse Barcan formula:

$$\Box \forall x \varphi(x) \to \forall x \Box \varphi(x)$$

 \rightarrow What follows is based on joint work with Joel David Hamkins

The symbols □ and ♦ 00000 Modal logic of forcing

Predicate Principles of Forcing

Predicate Modal Principles of Forcing

Definition

A predicate forcing translation τ maps *n*-ary predicate symbols $P_i(\bar{x})$ to set theoretic formulas $\psi_i(\bar{x})$ with *n* free variables.

$$\varphi(P_0(\bar{x}_0),...,P_n(\bar{x}_n)) \longrightarrow \varphi(\psi_0(\bar{x}_0)/P_0,...,\psi_n(\bar{x}_n)/P_n)$$

Definition

$$\begin{split} &\mathsf{Force}^{\mathsf{ZFC}}_\forall = \{\varphi \in \mathcal{L}_\Box \,|\, \mathsf{ZFC} \vdash \varphi^\tau \text{ for all predicate forcing translations } \tau \} \\ &\mathsf{Force}^W_\forall = \{\varphi \in \mathcal{L}_\Box \,|\, W \models \varphi^\tau \text{ for all predicate forcing translations } \tau \} \end{split}$$

In other words, we now consider all predicate substitution instances instead of propositional substitution instances.

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Conjecture

Conjecture Force $\forall^{\mathsf{ZFC}} = \mathbf{QS4.2}^{4}$

Proof Idea: Again, $Force_{\forall}^{ZFC} \supseteq QS4.2$ is easy but $Force^{ZFC} \subseteq QS4.2$ is hard.

- Expand the definition of labelling and prove that it still works.
- Prove a completeness result with respect to "sufficiently simple" Kripke models.
 - → What does "sufficiently simple" mean in this context? Not so easy since finite models will no longer do the job!
- Given a "sufficiently simple" Kripke model, provide a labelling with respect to some model *W* of ZFC.

⁴QS4.2 is the quantified analogue of S4.2.

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Conjecture

Conjecture Force $ZFC = \mathbf{QS4.2}^4$

Proof Idea: Again, $Force_{\forall}^{ZFC} \supseteq QS4.2$ is easy but $Force^{ZFC} \subseteq QS4.2$ is hard.

 $\checkmark\,$ Expand the definition of labelling and prove that it still works.

- ✓ Prove a completeness result with respect to "sufficiently simple" Kripke models.
 - → What does "sufficiently simple" mean in this context? Not so easy since finite models will no longer do the job!
 - Given a "sufficiently simple" Kripke model, provide a labelling with respect to some model *W* of ZFC.
 - → 1. and 2. are done! Still figuring out some details for 3...

⁴QS4.2 is the quantified analogue of S4.2.

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

Thank you for listening! Any questions?

The symbols □ and ◊ 00000

Modal logic of forcing

Predicate Principles of Forcing

References I

Some papers on the modal logic of forcing:

- J. D. Hamkins & B. Löwe, 'The modal logic of forcing', *Trans. Amer. Math. Soc.*, 360:4 (2008) 1793–1817.
- [2] J. D. Hamkins, G. Leibman & B. Löwe, 'Structural connections between a forcing class and its modal logic', *Isr. J. Math.*, 207:2 (2015) 617–651.
- [3] J. D. Hamkins & B. Löwe, 'Moving up and down in the generic multiverse', In: K. Lodaya, editor, Logic and Its Applications, 5th Indian Conference, ICLA 2013, Chennai, India, January 10-12, 2013. Proceedings, Lecture Notes in Computer Science, Vol. 7750, (Springer-Verlag, Heidelberg, 2013), 139–147.
- [4] J. D. Hamkins, A simple maximality principle. J. Symb. Log., 68:2 (2003) 527–550.
- [5] C. J. Rittberg, *The modal logic of forcing*, Master's thesis, Westfälische Wilhelms-Universität Münster, 2010.
- [6] A. C. Block & B. Löwe, 'Modal logic and multiverses', *RIMS Kôkyûroku*, 1949 (2015) 5–23.
- [7] J. Piribauer, *The modal logic of generic multiverses*, Master's thesis, Universiteit van Amsterdam, 2017 (MoL-2017-17).

The symbols \Box and \Diamond 00000

Modal logic of forcing

Predicate Principles of Forcing

References II

Some papers on the modal logic of other mathematical structures:

- [8] S. Berger, A. C. Block, & B. Löwe, 'The modal logic of abelian groups', Algebra universalis, Vol. 84, (2023).
- [9] T. Inamdar & B. Löwe, 'The modal logic of inner models', J. Symb. Log., 81:1 (2016) 225–236.
- [10] J. D. Hamkins & W. A. Wołoszyn, Modal model theory, preprint, arXiv:2009.09394v1, 2020.
- D. I. Saveliev & I. B. Shapirovsky, 'On modal logics of model-theoretic relations', Stud. Log. 108 (2020) 989–1017.
- [12] S. Berger, *The modal logic of abelian groups*. Master's thesis, Universität Hamburg, 2018.

Background on Set Theory and Modal Logic:

- [13] T. Jech, Set Theory: The Third Millennium Edition, Springer (2003).
- [14] P. Blackburn, M. de Rijke & Y. Venema, *Modal Logic*. Cambridge Tracts in Theoretical Computer Science, Vol. 53 (Cambridge University Press, Cambridge, 2001).