[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) [Predicate Principles of Forcing](#page-19-0) \bigcirc

On the Modal Account of Forcing Oberseminar Logik der Universität Bonn

Clara Elizabeth List Includes joint work with: Joel David Hamkins

Universität Hamburg

24 Oktober 2023

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) [Predicate Principles of Forcing](#page-19-0) \bigcirc

Table of Contents

[What is forcing?](#page-2-0)

[The symbols](#page-5-0) \Box and \diamondsuit

[Modal logic of forcing](#page-14-0)

[Predicate Principles of Forcing](#page-19-0)

Table of Contents

[What is forcing?](#page-2-0)

[The symbols](#page-5-0) \Box and \diamondsuit

[Modal logic of forcing](#page-14-0)

[Predicate Principles of Forcing](#page-19-0)

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) [Predicate Principles of Forcing](#page-19-0) Ω Ω

Independence Proofs

• A large area of set theory focuses on consistency and independence proofs:

> Is φ provable from ZFC? Is $\neg \varphi$ provable from ZFC? Are neither provable from ZFC, i.e. is φ independent?

• In other words, we want to prove statements of the form

 $Con(ZFC) \implies Con(ZFC + \varphi)$

i.e. ZFC + φ is relatively consistent.

• We need a large toolbox of ways to construct new models! One such tool is forcing.

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) [Predicate Principles of Forcing](#page-19-0) \bigcirc Predicate Principles of Forcing \circ Predicate Principles of Forcing

What is Forcing?

- We start off with a ground model W of ZFC. By doing lots of "technical stuff", we can extend W to a new model $W[G]$ of ZFC in a very specific way. 1
- The "technical stuff" allows us to:
	- ▶ force certain sentences to be true in $W[G]$, and
	- reason about $W[G]$ from within W, even though a lot of $W[G]$ lives outside of W.

Con(ZFC)
$$
\implies
$$
 there is a model $W \models ZFC$
 \implies there is a model $W[G] \models ZFC + \varphi$
 \implies Con(ZFC + φ)

 $1G$ denotes the generic filter of a forcing notion used in the construction.

Table of Contents

[What is forcing?](#page-2-0)

[The symbols](#page-5-0) \Box and \diamondsuit

[Modal logic of forcing](#page-14-0)

[Predicate Principles of Forcing](#page-19-0)

[What is forcing?](#page-2-0) [The symbols](#page-5-0) □ and ♀ [Modal logic of forcing](#page-14-0) [Predicate Principles of Forcing](#page-19-0)

0000 0000 0000 0000 0000 0000 0000

Modal Logic

- Modal Logic is the study of the modalities *necessarily* (\Box) and *possibly* (\Diamond). It gives a framework for describing to what extent a formula φ is true.
- There are many other interpretations of \Box and \Diamond , for instance:
	- **Epistemic:** Alice knows φ ($\Box \varphi$); Alice believes φ ($\Diamond \varphi$)
	- **•** Deontic: It is *obligatory* that φ ; it is *permissible* that φ
	- **Temporal:** At every future moment φ ; at some future moment φ

[What is forcing?](#page-2-0) [The symbols](#page-5-0) □ and ♀ [Modal logic of forcing](#page-14-0) [Predicate Principles of Forcing](#page-19-0)

0000 0000 0000 0000 0000 0000 0000

Modal Logic

- Modal Logic is the study of the modalities *necessarily* (\Box) and *possibly* (\Diamond). It gives a framework for describing to what extent a formula φ is true.
- There are many other interpretations of \Box and \Diamond , for instance:
	- **Epistemic:** Alice knows φ ($\Box \varphi$); Alice believes φ ($\Diamond \varphi$)
	- **•** Deontic: It is *obligatory* that φ ; it is *permissible* that φ
	- **Temporal:** At every future moment φ ; at some future moment φ
	- \rightarrow Note that \Box and \Diamond are dual, so $\Diamond \varphi \iff \neg \Box \neg \varphi$.

Kripke frames and Kripke models

Temporal example: $w_0 \models \Diamond p$, $w_0 \not\models \Box p$, $w_0 \models \Diamond \Box p$

In general, we study frames (W, R) ,

- \blacktriangleright where W is a set of worlds.
- \blacktriangleright R an *accessibility* relation,

and *models on frames* (W, R, ν) ,

▶ where ν : Prop \times $W \rightarrow \{0,1\}$ is a valuation function.

Kripke frames and Kripke models

Temporal example: $w_0 \models \Diamond p$, $w_0 \not\models \Box p$, $w_0 \models \Diamond \Box p$

In this example $\mathcal{M} = (W, R, \nu)$ is given by:

►
$$
W = \{w_n | n \in \omega\}
$$

\n► $w_n R w_m \iff n < m$
\n▶ $\nu(p, w_n) = 1 \iff (n \neq 0 \land n \neq 2)$

We say $M, w \models \Box \varphi$ if and only if for all v with wRv we have $\mathcal{M}, \mathsf{v} \models \varphi.$

For a frame F, we may write $\mathcal{F} \models \varphi$ if $\mathcal{M}, w \models \varphi$ for every model M on F and every world w on the frame.

Interpretations for studying mathematical structures

Suppose

- \triangleright C is the collection of L-structures for some first-order language L
- ▶ and \prec is some accessibility relation on C.

Then (C, \preceq) is a Kripke frame which we can study.

Interpretations for studying mathematical structures

Suppose

- \triangleright C is the collection of \mathcal{L} -structures for some first-order language \mathcal{L}
- ▶ and \prec is some accessibility relation on C.

Then (C, \preceq) is a Kripke frame which we can study.

Some examples that have been studied include

- All abelian groups together with the relation \prec that holds between G and H whenever G is isomorphic to a subgroup of H .
- All transitive set models of ZFC together with $M \prec N$ if and only if M is an inner model in N.
- ▶ In general, Mod(Γ) for some set of axioms Γ together with a specified type of embedding.
- All set models of ZFC together with $M \preceq N$ if and only if N is a forcing extension of M.

→ See for instance $[8]$, $[9]$, $[10]$, $[1]$, $[2]$.

Interpretations for studying mathematical structures

Suppose

- \triangleright C is the collection of L-structures for some first-order language L
- ▶ and \preceq is some accessibility relation on C.

Then (\mathcal{C}, \preceq) is a Kripke frame which we can study.

Denote by \mathcal{L}_{\Box} the language which contains infinitely many propositional variables and logical symbols \wedge , \neg and \Box .

Question

For which \mathcal{L}_{\Box} sentences $\varphi(p_0, ..., p_n)$ do we have

$$
M \models \varphi(\psi_0/p_0,...,\psi_n/p_n)
$$

for all $M\in\mathcal{C}$ and all substitutions $\bm{p_i}\mapsto\psi_i$ with $\mathcal L$ sentences $\psi_i?$

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) [Predicate Principles of Forcing](#page-19-0) \bigcirc \big

The Forcing Interpretation of \square

A forcing translation is a function $\tau:\varphi\mapsto \varphi^\tau$ mapping formulas of $\mathcal L_\Box$ to $\mathcal L_\in$ such that Boolean connectives are preserved and $(\Box \varphi)^\tau$ is the \mathcal{L}_{\in} formula expressing

"in all forcing extensions φ^{τ} holds"²

This is just a fancy way of saying that τ is a substitution of propositional variables in \mathcal{L}_{\Box} for set-theoretic formulas.

Definition

- Force^{ZFC} = { $\varphi \in \mathcal{L}_\Box$ | ZFC $\vdash \varphi^\tau$ for all forcing translations τ }
- Force ${}^{\textstyle{\cal W}}=\{\varphi\in {\cal L}_\Box \ | \ W\models \varphi^\tau$ for all forcing translations $\tau\},$ where W is a model of set theory

²Note that this is indeed expressible in \mathcal{L}_\in

Table of Contents

[What is forcing?](#page-2-0)

[The symbols](#page-5-0) \Box and \diamondsuit

[Modal logic of forcing](#page-14-0)

[Predicate Principles of Forcing](#page-19-0)

What we already know

Theorem (Hamkins, Löwe [\[1\]](#page-25-0)) If ZFC is consistent, then Force^{ZFC} = $S4.2$. If $W \models$ ZFC, then **S4.2** \subset Force^W \subset **S5**.

```
S4.2 = T + 4 + .2\mathsf{T}:\Box p\rightarrow p (reflexivity)
        4: \diamondsuit \diamondsuit \rho \rightarrow \diamondsuit \rho (transitivity)
        .2: \Diamond \Box p \rightarrow \Box \Diamond p (directedness)
SS = SA.2 + 55: \Diamond \Box p \rightarrow \Box p (symmetry)
```
[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond **[Modal logic of forcing](#page-14-0)** [Predicate Principles of Forcing](#page-19-0) Ω

Control Statements

Proving Force^{ZFC} \supset **S4.2** is easy: Just verify the axioms! Proving Force^{ZFC} \subset **S4.2** is significantly harder.

 \rightarrow This uses control statements.

Definition

Let w be a world in a Kripke model M. In (M, w) :

$$
\blacktriangleright \varphi \text{ is a button iff } \mathcal{M}, w \models \Box \Diamond \Box \varphi
$$

$$
\blacktriangleright \phi \text{ is a switch iff } \mathcal{M}, w \models \Box \Diamond \varphi \land \Box \Diamond \neg \varphi
$$

Proposition

If **S4.2** holds, then every \mathcal{L} formula is either a button, a negated button, or a switch.

If we view the forcing multiverse as a Kripke model, then the following propositions are control statements.

\n- $$
p = "S \subseteq \omega_1
$$
 is not stationary" is a button
\n- $p = "N_n^L$ is (not) collapsed" is a (negated) button
\n- $p = "Continuum hypothesis is true" is a switch$
\n

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) [Predicate Principles of Forcing](#page-19-0) \bigcirc

Proving Force^{ZFC} ⊆ **S4.2**

- We want to show that if $\varphi \notin S4.2$, then there is a ZFC model W and a forcing translation τ , such that $W \not\models \varphi^{\tau}$
- Idea: If we have completeness of **S4.2** with respect to a class of "sufficiently simple" Kripke models, then we can translate the failure of φ in a "sufficiently simple" Kripke model into the failure of φ^τ in the set-theoretic forcing multiverse.
- If we have a collection of *independent*³ buttons and switches, then the possible patters (pushed/unpushed, on/off) form a pre-Boolean algebra.
	- \rightarrow This allows us to create a so-called *labelling of worlds*, which in turn gives us τ .

 $3A$ set of control statements is independent if manipulating the state (pushed/unpushed, on/off) of one of them does not change any others

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) [Predicate Principles of Forcing](#page-19-0) \bigcirc

Set-theoretic forcing multiverse of W

If we have such a labelling, we can define τ such that W mimics w_A , $W[G_0]$ mimics w_B , $W[G_2]$ mimics w_C etc.

If φ fails in w_A , then φ^{τ} fails in W.

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) **[Predicate Principles of Forcing](#page-19-0)**
0000 00000 00000 00000 00000 **0000**

Table of Contents

[What is forcing?](#page-2-0)

[The symbols](#page-5-0) \Box and \diamondsuit

[Modal logic of forcing](#page-14-0)

[Predicate Principles of Forcing](#page-19-0)

What about the predicate modal logic of forcing?

- In the previous slides we only considered formulas φ^τ where \Box does not occur in the scope of a quantifier, since quantifiers are only added to φ^τ through the substitution of propositional variables.
- $\bullet\,$ Let's expand our modal language: ${\cal L}^{\Box}$ now consists of countably many variables and countably many *predicate* symbols P_i of each arity, and is closed under \wedge , \neg , \Box and \forall .
- In this context, every world in a Kripke model now has a domain.

Question

What are the *predicate* modal principles of forcing?

One example is the converse Barcan formula:

$$
\Box\forall x\varphi(x)\rightarrow\forall x\Box\varphi(x)
$$

→ What follows is based on joint work with Joel David Hamkins

Predicate Modal Principles of Forcing

Definition

A predicate forcing translation τ maps *n*-ary predicate symbols $P_i(\bar{x})$ to set theoretic formulas $\psi_i(\bar{x})$ with *n* free variables.

$$
\varphi(P_0(\bar{x}_0),...,P_n(\bar{x}_n)) \xrightarrow{\tau} \varphi(\psi_0(\bar{x}_0)/P_0,...,\psi_n(\bar{x}_n)/P_n)
$$

Definition

 $\mathsf{Force}^{\mathsf{ZFC}}_\forall = \{\varphi \in \mathcal{L}_\Box \, | \, \mathsf{ZFC} \vdash \varphi^\tau \mathsf{for} \text{ all predicate forcing translations }\tau\}$ $\mathsf{Force}^W_\forall = \{\varphi \in \mathcal{L}_\Box \mid W \models \varphi^\tau \text{ for all predicate forcing translations }\tau\}$

In other words, we now consider all predicate substitution instances instead of propositional substitution instances.

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) **[Predicate Principles of Forcing](#page-19-0)** \bigcirc **Predicate Principles of Forcing**

Conjecture

Conjecture Force ${}^{\text{ZFC}}_{\forall}$ = **QS4.2**⁴

Proof Idea: Again, Force $\frac{ZFC}{\forall} \supseteq$ QS4.2 is easy but Force^{ZFC} \subset QS4.2 is hard.

- Expand the definition of labelling and prove that it still works.
- Prove a completeness result with respect to "sufficiently simple" Kripke models.
	- \rightarrow What does "sufficiently simple" mean in this context? Not so easy since finite models will no longer do the job!
- Given a "sufficiently simple" Kripke model, provide a labelling with respect to some model W of ZFC.

 4 QS4.2 is the quantified analogue of S4.2.

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) **[Predicate Principles of Forcing](#page-19-0)** \bigcirc **Predicate Principles of Forcing**

Conjecture

Conjecture

Force ${}^{\text{ZFC}}_{\forall}$ = **QS4.2**⁴

Proof Idea: Again, Force $\frac{ZFC}{\forall} \supseteq$ QS4.2 is easy but Force^{ZFC} \subset QS4.2 is hard.

 $\sqrt{}$ Expand the definition of labelling and prove that it still works.

- $\sqrt{\ }$ Prove a completeness result with respect to "sufficiently simple" Kripke models.
	- \rightarrow What does "sufficiently simple" mean in this context? Not so easy since finite models will no longer do the job!
	- Given a "sufficiently simple" Kripke model, provide a labelling with respect to some model W of ZFC.
		- \rightarrow 1. and 2. are done! Still figuring out some details for 3...

 4 QS4.2 is the quantified analogue of S4.2.

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) **[Predicate Principles of Forcing](#page-19-0)** \degree **Properties** of Principles of Forcing \degree **Properties**

Thank you for listening! Any questions?

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \square and \diamond [Modal logic of forcing](#page-14-0) **[Predicate Principles of Forcing](#page-19-0)**
0000 00000 00000 00000 00000 00000

References I

Some papers on the modal logic of forcing:

- $[1]$ J. D. Hamkins & B. Löwe, 'The modal logic of forcing', Trans. Amer. Math. Soc., 360:4 (2008) 1793–1817.
- [2] J. D. Hamkins, G. Leibman & B. Löwe, 'Structural connections between a forcing class and its modal logic', Isr. J. Math., 207:2 (2015) 617–651.
- [3] J. D. Hamkins $\&$ B. Löwe, 'Moving up and down in the generic multiverse', In: K. Lodaya, editor, Logic and Its Applications, 5th Indian Conference, ICLA 2013, Chennai, India, January 10-12, 2013. Proceedings, Lecture Notes in Computer Science, Vol. 7750, (Springer-Verlag, Heidelberg, 2013), 139–147.
- [4] J. D. Hamkins, A simple maximality principle. J. Symb. Log., 68:2 (2003) 527–550.
- [5] C. J. Rittberg, The modal logic of forcing, Master's thesis, Westfälische Wilhelms-Universität Münster, 2010.
- [6] A. C. Block & B. Löwe, 'Modal logic and multiverses', RIMS Kôkyûroku, 1949 (2015) 5–23.
- [7] J. Piribauer, The modal logic of generic multiverses, Master's thesis, Universiteit van Amsterdam, 2017 (MoL-2017-17).

[What is forcing?](#page-2-0) [The symbols](#page-5-0) \Box and \Diamond [Modal logic of forcing](#page-14-0) **[Predicate Principles of Forcing](#page-19-0)** \bigcirc **Predicate Principles of Forcing**

References II

Some papers on the modal logic of other mathematical structures:

- [8] S. Berger, A. C. Block, & B. Löwe, 'The modal logic of abelian groups', Algebra universalis, Vol. 84, (2023).
- [9] T. Inamdar & B. Löwe, 'The modal logic of inner models', J. Symb. Log., 81:1 (2016) 225–236.
- [10] J. D. Hamkins & W. A. Wo loszyn, Modal model theory, preprint, arXiv:2009.09394v1, 2020.
- [11] D. I. Saveliev & I. B. Shapirovsky, 'On modal logics of model-theoretic relations', Stud. Log. 108 (2020) 989–1017.
- [12] S. Berger, The modal logic of abelian groups. Master's thesis, Universität Hamburg, 2018.

Background on Set Theory and Modal Logic:

- [13] T. Jech, Set Theory: The Third Millennium Edition, Springer (2003).
- [14] P. Blackburn, M. de Rijke & Y. Venema, Modal Logic. Cambridge Tracts in Theoretical Computer Science, Vol. 53 (Cambridge University Press, Cambridge, 2001).